IV B.Tech - I Semester – Regular Examinations - DECEMBER 2023

SMART GRID TECHNOLOGIES (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries

14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.				
					Marks				
	UNIT-I								
1	a)	Discuss about any four elements of smart	L2	CO1	7 M				
		grid components.							
	b)	Illustrate about the computational	L3	CO2	7 M				
		intelligence feature in smart grid.							
	OR								
2	a)	Distinguish between Traditional Grid and	L2	CO2	7 M				
		Smart Grid.							
	b)	Summarize the stakeholders in smart grid.	L2	CO1	7 M				
UNIT-II									
3	a)	Explain the role of Wide Area Monitoring	L2	CO1	7 M				
		Systems (WAMS) in power system.							
	b)	Distinguish between Conventional Metering	L2	CO2	7 M				
		and Smart Metering.							
	<u>OP</u>								
	OR								

Max. Marks: 70

4	a)	Discuss the operation of phasor	L2	CO1	7 M			
	ч)	measurement unit.		001	/ 1/1			
	b)	Explain multi-agent system architecture	L2	CO2	7 M			
	0)	(MAS).			/ 1/1			
	UNIT-III							
5	a)	Demonstrate about contingencies in smart	L3	CO3	7 M			
	,	grid.						
	b)	Explain Newton Raphson load flow method.	L2	CO3	7 M			
	OR							
6	a)	Explain the challenges of load flow studies	L2	CO3	7 M			
		in smart grid.						
	b)	Illustrate the performance indices in smart	L3	CO3	7 M			
		grid and explain external system						
		equivalents.						
		UNIT-IV						
7	a)	Explain decision support tools.	L2	CO1	7 M			
	b)	Classify optimization techniques in smart	L2	CO4	7 M			
		grid.						
		OR						
8	a)	Discuss the steps involved in applying	L2	CO1	7 M			
		Heuristic optimization techniques.						
	b)	Describe particle swarm optimization	L2	CO4	7 M			
		technique.						
UNIT-V								
9	a)	Explain smart grid network interoperability.	L4	CO5	7 M			
	b)	Summarize the benefits and challenges of	L2	CO5	7 M			

		interoperability in smart grid.					
OR							
10	a)	Illustrate the cyber security concerns	L3	CO5	7 M		
		associated with AMI.					
	b)	Analyze the mitigation approach to cyber	L4	CO5	7 M		
		security risks.					